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ABSTRACT 
The Closed form expression of disturbance in temperature distribution in a rectangular isotropic plate in the 

presence of three interior Griffith Cracks is being obtained by using the principle of cross-linear-

superposition along with Fredholm integral equation. It is found that temperature distribution at crack tips is 

smooth. Flux possesses Cauchy type singularity at crack tips. 
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INTRODUCTION 

we considered the problems of single and double Griffith-cracks and got dual and triple series equations 

which were solved by the method of Parihar [1].It is very obvious that what will happen if there are three 

Griffith-cracks in the isotropic rectangle. As we know this problem will reduce to quadruple series 

equations. We consider a cross-section of three dimensional body having three Griffith-cracks along x-axis 

and y-axis being through the midpoint of middle crack and perpendicular to x-axis. Thus we consider a 

rectangle of length 2a and width 2δ . In previous chapters width was (δ 1 and δ 2 ).  x axis is along length of 

rectangle and y-axis along width of rectangle.[2] Cracks occupy the region y= 0, 0≤  x < b, d ≤  x < e < a,. 

The physical problem will be reduced to the following boundary value problem for steady case. 

1( , ) ( , ) ( ) 0T x T x Q x x a
y y

 
 
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It is being assumed that specific heat and linear expansion do not very with heat change. The temperature 

distribution is governed by following Laplace equation 

 
2 2

2 2
( , ) 0T x y

x y

  
  

  
                1.5 

 

The plan of paper is as follows: We will formulate and reduce the problem to quadruple series equations. The 

solution of quadruple series equation will be obtained. Further we will solve the physical quantities in terms 

of solution of fredholm integral equation. The solution of Fredholm integral equation will be given in 

section. 
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FORMULATION 

For the solution of (1.5) we use the principle of cross-linear superposition along with finite Fourier transform 

method. We consider the solution as 

   0 0

1 1
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n n n n n m m m

n m
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T x y A y B y x C x y    

 
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           2.1 

Where 
,,n n nA B C  are three constants to be determined and ,n m

n m

a

 
 


          ……… 2.2 

 

DETERMINATION OF CONSTANTS 

The boundary conditions in (1.1) and (1.2), after using symmetry of geometry and using (2.1), will give 

  1
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The boundary conditions (1.4) along with (2.1) , gives 
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The form 2.3 -2.4 we get inversion of finite Fourier Transforms 
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Using 2.7 in 2.5 , we get 
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The boundary condition 1.3 with 2.1 gives 

1

1
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Using 2.6 in 2.11 which gives 
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Thus the physical problem is reduced to the solution of quadruple series equation (2.10) and (2.12). 
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SOLUTION OF QUADRUPLE SERIES EQUATION 

We shall follow the method of Kushwaha [15]. We assume the trial solution as- 

1 '
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The substitution of (3.1) and (3.2) into 2.5 will satisfy it if 
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Now we substitute from 3.1 into 2.11 , we get 
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And 0D is an arbitrary constant to be determined by (3.3). For first approximation we take 



International Journal of Advanced Research in Engineering Technology and Sciences   ISSN 2349-2819 
  www.ijarets.org                       Volume-5, Issue-1   January- 2018                 Email- editor@ijarets.org     

 

Copyright@ijarets.org          Page 4  
 

 

01

sin
2 2

( ) ( ) ,
( )

qt

h t t d t e
a t

 
                3.11 

0 0 2
0

( ) ( ) 2

2

P d P e t
D

t

 
           3.12 

 

 

 

1 3

2sec( / 2)sec( / 2)qd qe
t t

q
  

2 3

0

2 ( )cos( / 2)

b

t Q x qx dx    

  

sin( )
2

3 1

2 2 2 20 2

qb

dt
t

t t 



  
 

          3.13 

 

( , ) ( , )
,

1 cos( ) 1 cos( )

G b d G b e

qd qe
  

 
 

 

 

PHYSICAL QUANTITIES 

In this section we shall evaluate flux and Temperature for y = 0. 

 

T E M P E R A T U R E 

Temperature ( ,0) , 0 ,T x x b d x e      will be obtained through the equation (2.9) with 0 ( )P x  on left 

hand side. Thus 
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Where ( ) ( )g t and h t are the solution of coupled Fredholm integral equation of second kind given by (3.4) 

and (3.8) , respectively . The temperature at general point (x,y) is given as , 
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FLUX 

The flux is obtained for 0 , ,y b x d e x a      from the equation (2.12), keeping Q3 (x ) on right hand 

side and taking P1 (x ) and P2 (x ) on left hand side as 
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1 ; 1,2q q i
a


    

Flux has Cauchy type singularity at crack tips. 

 

FLUX INTENSITY FACTOR 

We define flux intensity factor as 

lim ( ,0)b
x b

K x b T x
y


 


 

lim ( ,0)d
x d

K d x T x
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 
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
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Making use of (4.12) in (4.7)-(4.10) and evaluating the limits. We get, 

3 3 3( ) , ( ) , ( )b d eK a b K a d K a e               4.13 
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While we kept in mind that the terms P1 (x ) and 
3( )x  do not possess singularity at crack tips. 

 

SOLUTION OF FREDHOLM INTEGRAL EQUATION 

We will solve the coupled Fredholm integral equation by approximate expansion method in terms of  nqe 

,for different n = 1, 2, 3, ..... We retained up to 6qe   

 only. Before we go to explain this method first we take the boundary conditions and the functions involved 

in the solution of g(t) and h(t) interms of Kernel ( , )K t . We assume that the faces x a  posses’ constant 

flux and the face y   are insulated. Thus 

1 2 1 3 2( ) 0 , ( ) ( )Q x Q y d and Q y d     
1 2,d d are Constants      5.1 

Now making use of (5.1) and (2.8) we get 
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1 1 12 4 6

0 1 2

0

( , ) ( , ) 2 ( , ) 2 ( , ) 3 ( , )

b e

q q q

d

K x P x t e x e x e x dx        
 

       
 
   5.6 

 

cos( / 2) ( )
( , )

( , )

qx x
P x t

G x t


           5.6.a 

0( , ) 1 cos( )cos( ) cos(2 )cos(2 )x q qx q qx             5.6.b 

1( , ) 3 cos( )cos( ) 2cos(2 )cos(2 ) 2cos( ) 2cos( )

2cos( )cos(2 ) 2cos(2 )cos( )

x q qx q qx q qx

qx q qx qx

    



     

 
           

5.6.c 

2 0( , ) 2 ( , )x x               5.6.d 

Now we assume that 

1 1

0 0

( ) ( ) , ( ) ( )
nq mq

n m

n m

g t g t e h t h t e
 

 

 

           5.7 



International Journal of Advanced Research in Engineering Technology and Sciences   ISSN 2349-2819 
  www.ijarets.org                       Volume-5, Issue-1   January- 2018                 Email- editor@ijarets.org     

 

Copyright@ijarets.org          Page 7  
 

And substitute in (3.4) and (3.8) and comparing the coefficient of  1nq
e
 from both sides and we took n=6 
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t r t t d t b
a

      
 

     
 
   

4 7

2
( ) ( ) ,h t t b t e

a
     

 

 

6 8 8 81

2
( ) ( ) , ( ) ( ) ( )g t t t r t t

a
     

 81 1 0

0

2
( ) ( ) ( , ) 3 ( , ) ,0

b e

d

t r t t d t b
a

      
 

     
 
   

 

6 8

2
( ) ( ) ,h t t d t e

a
     

 

Thus 

9

2
( ) ( ) ( ) ,0g t r t t t b

a
    

 1 1 12 2 4

9 01 61 71 81( ) ( ) 2 ( ) ( ) ( )
q q q

t t e t e t e t
            

 
 

9

2
( ) ( ) ( ) ,h t r t t b t e

a
     

Thus substituting (5.9) in (4.1) and (5.10) in (4.2) and then evaluation of integrals by numerical method will 

give temperature. 

The substitution of (5.9) - (5.10) into (4.9) and thus numerical evaluation of integrals will give us 

, ,b d eK K K  from (4.13). 
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DISCUSSION AND CONCLUSION 

The problem of disturbance in heat distribution caused due to a Griffith crack in an isotropic rectangle with 

most general boundary condition had been discussed. The general problem is reduced to Fredholm integral 

equation of second kind. The solution of Fredholm integral equation is obtained by approximation the kernel 

for prescribed (known) temperature and flux at boundary. Method can be used for most general conditions 

also. We used Fourier series method with the principle of cross-linear superposition. It is observed that the 

temperature is smooth at crack tips while flux is singular. It has Cauchy type of singularity. 
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